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Abstract
The heterogeneous string model for a twist disclination, which is an extended
defect of rotational type, is considered. Within the framework of this model,
the contribution of twist disclinations to the specific heat and internal friction
of disordered semiconductors is calculated.

1. Introduction

Recently, the low-temperature thermal conductivity of some polycrystalline semiconductors
was found [1] to reveal a glass-like behaviour typical for amorphous materials. We remark
that amorphous semiconductors are of steady current interest. There is reason to believe
that extended defects such as dislocations and disclinations can play a significant role in the
description of transport properties of amorphous solids [2]. Therefore, it is interesting to
find the contribution of the extended defects to other thermal characteristics of disordered
semiconductors. In this paper, we calculate the contribution to the specific heat and internal
friction due to twist disclinations within the heterogeneous string model.

2. The specific heat

In dislocation theory, the line tension is determined by a conventional line-tension formula of
the form F = T/ρ, where T is the static line tension, ρ is the curvature radius, and F is an
appropriate component of the Peach–Koehler force, Fi , of opposite sign (see, e.g., [3, 4]). The
Peach–Koehler force can generally be written (per unit length of the disclination line) as

Fr = εrakτau P
i σik, (1)

where σik is the stress tensor, εrka is the fully antisymmetric tensor, �τ is the unit vector tangent
to the defect line, and �u P = �u+ − �u− = �b +[ �� �R] describes the jump in displacement at point P
1 Author to whom any correspondence should be addressed.
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due to a linear defect. Here �b is the Burgers vector, �� is the Frank vector, and �R = �r − �r0

is a vector from any point on the axis of rotation to point P . For line tension and effective
mass the stress tensor is determined via the static displacement fields in an elastic body caused
by plastic deformation due to defect motion. As is well known, the displacement fields are
obtained by using the Green function (see, e.g., [5])

un(�r , t) = −
∫

ci jkl G jn,i δe pl
kl dV ′, (2)

where ci jkl is the elastic modulus, G jn is the Green tensor function, δe pl
kl is the variation of the

plastic part of the strain tensor. Hereafter, the summation over repeated indices is assumed
and G jn,i = ∂G jn/∂xi . Let us apply this scheme to twist disclination. The problem of
motion of disclinations and disclination loops was examined in [6–8]. It was shown in [6]
that straight wedge disclinations have no slip surfaces and cannot move conservatively. In
contrast, the straight twist disclination has a slip plane and can move conservatively. We
will study the case of the rectilinear twist disclination with a fixed axis of rotation. Let the
disclination line be oriented along the z-axis and the axis of rotation along the y-axis, i.e.,
�� = (0,�, 0), �τ = (0, 0, 1). In accordance with equation (1) the force on a disclination line
can be written as

F1 = −�(X3σ12 − X1σ32), F2 = −�(X1σ31 − X3σ11), F3 = 0. (3)

The condition for conservative motion of a linear defect is generally written as dV = 0 (no
vacancies are created or absorbed). It was shown for disclinations in [6] that the motion must
be normal to [[ �� �R]�τ ]. This enables one to define a disclination glide surface as the surface of
revolution around the axis �� containing the disclination line. In our case, this is the xz-plane.
Therefore only the component F1 is of interest for sliding twist disclination. We suggest that
the motion of the disclination line is oscillatory and �δx = (ε, 0, 0). Then the displacement
fields are written as [9] (see also [8])

un(�r) = µ�

∫ ∞

−∞
(G yn,x + Gxn,y)ε(z

′)z ′ dz′. (4)

Performing straightforward calculations one obtains in the linear-in-ε approximation (for
ka � 1)

T (z) = µ�2z2

2
. (5)

The last step is to determine the mass of the twist disclination. The calculations are similar to
those for the case of a dislocation (see, e.g., [10, 11]) and the result is

m(z) = ρ�2z2

2
. (6)

Thus, both the linear tension and the mass of the disclination depend on z. This means
that a twist disclination can be represented as a string, with the understanding that this is a
heterogeneous string. The equation of motion (without damping) for heterogeneous string is
written as

m(z)
∂2ε(z, t)

∂ t2
= ∂

∂z

(
T (z)

∂ε(z, t)

∂z

)
. (7)

By using of the boundary conditions in the form ε(−L) = ε(L) = 0 one finally obtains

ε(z, t) = ε0v

ωz
sin

ωz

v
cos ωt, (8)
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with ε0 being the maximal amplitude (at z = 0), and the spectrum

ωn = v|kn|, kn = πn/L, n = 0,±1,±2, . . . . (9)

Now, we are interested in the contribution to the specific heat. The internal energy is written
as

U =
∑

n

h̄ωn

exp(h̄ωn/kB T ) − 1
, (10)

where the sum is over all the normal modes of the vibrating disclination, and kB is the Boltzmann
constant. Approximating the sum by an integral, one finally obtains the specific heat per mole:

Cv = p
π2

3

�a2
0

Z
NkB

T

�
, (11)

where a0 is the lattice constant, � is the disclination density, N is the number of atoms
per mole, Z is the number of atoms per unit cell, � is the Debye temperature, and
p = v0/v with v0 being the sound velocity in the perfect lattice. To make estimates,
let us use the values � = 1014 m−2, a0 = 10−9 m. Equation (11) takes then the form
Cv = 3.3 × 10−4(pNkB/Z)(T/�) J K−2 mol−1. Notice the linear variation of the heat
capacity with temperature which is typical for amorphous materials.

3. The decrement

Making an analogy with dislocations [12], we will study the effect of pinned disclinations on
the energy lost by the stress wave travelling through a crystal in the framework of the vibrating
string model. The basic characteristic is the logarithmic decrement Q−1 which is generally
defined by

Q−1 = 
W

2W
, (12)

where 
W is the energy lost per cycle and W is the total vibrational energy of a specimen.
For a linear defect, 
W = PT where T is the period and

P =
∑

n

1

T

∫ T

0

∫ L

−L
Re(Fi ) Re(ε̇n

i ) dl dt (13)

determines the mean energy (in unit time) lost to friction. Here Fi is the Peach–Koehler force
acting on unit length of the disclination line due to the external stress field,εi is the displacement
of the disclination in the glide plane, and the sum over all normal modes is assumed. The total
vibrational energy stored per cycle reads W = σ 2

a /2µ, where σa is the amplitude of the applied
stress wave and µ is the shear modulus. To find εi , one has to study the equation of motion of
the disclination. Let us treat the disclination as a damped oscillating string. The position of
the disclination in the glide plane is ε(z, t). In this case, the equation of motion is written as

m
∂2ε(z, t)

∂ t2
= ∂

∂z

(
T

∂ε(z, t)

∂z

)
− B

∂ε(z, t)

∂ t
+ Fi , (14)

where m is the mass of the twist disclination, T is the line tension, and B is the damping
parameter. All these parameters are determined per unit length of the disclination line and can
generally be z-dependent.

In dislocation theory, there are several damping mechanisms known (see, e.g., [13]).
Following Eshelby [14], we suppose here that the damping constant is entirely due to the
reradiation damping mechanism. In this case,

B = D

v2
(15)
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where D is the rate of radiation per unit length of the defect line and v is the velocity of a
disclination. In accordance with [14], the rate of radiation is

N =
∫

fi u̇i dV (16)

where elastic displacements ui are caused by fictitious forces fi . As is known [9], the fictitious
forces fi are determined by

f j = −ci jkl δepl
kl,i . (17)

The displacement fields can be obtained by using the dynamic Green function

un(�r , t) = −
∫

ci jkl G jn,i δepl
kl dV ′ (18)

where Gi j is the dynamic Green tensor function. Explicitly (see [14]),

G jn = χ, jn + δ jnω̄, (19)

with

ω̄ = eiω(t−R/ct )

4πµR
, χ = c2

t

ω2

eiω(t−R/ct )

4πµR
− c2

t

ω2

eiω(t−R/cl )

4πµR
. (20)

Here ct and cl are the velocities of transverse and longitudinal sound waves, respectively,
R = |�r − �r ′|, and ω is the frequency. Let us calculate the damping parameter B . For this
purpose, we consider the motion of the rectilinear twist disclination with a fixed axis of rotation.
We suggest that the motion and geometry of the twist disclination are the same as above. Then
the displacement fields in equation (18) can be written as (see also [8, 9])

un(�r , t) = µ�ε0eiωt
∫ ∞

−∞
(G yn,x + Gxn,y)eikz′

z′ dz′. (21)

We will consider the region k < ω/cl . In this case, for ka � 1 one finally obtains (see [15]
for details)

D = µ�2z2ε2
0 c2

t ω
3 cos2 kz

16

(
1

c4
t

+
1

c4
l

− 2k2

c2
l ω

2

)
, v2 = ε2

0ω
2 cos2 kz

2
. (22)

In accordance with equation (15), the damping parameter B takes the form

B = µ�2z2c2
t ω

8

(
1

c4
t

+
1

c4
l

− 2k2

c2
l ω

2

)
. (23)

Thus, the damping parameter becomes z-dependent. Let us consider the equation of
motion (14). The Peach–Koehler force is the same as in (1). We consider twist disclination
moving in the glide plane xz. In this case, only the component F1 will be incorporated in
equation (14). Thus, the equation of motion takes the form

m(z)
∂2ε(z, t)

∂ t2
= ∂

∂z

(
T (z)

∂ε(z, t)

∂z

)
− B(z)

∂ε(z, t)

∂ t
− �(zσ12 − xσ32). (24)

In our case, equation (24) takes the form

z2 ∂2ε

∂z2
+ 2z

∂ε

∂z
− z2

v2

∂2ε

∂ t2
− z2γ

v2

∂ε

∂ t
− �zσ12

v2α
= 0. (25)

Notice that we omit here the term with σ32 which is responsible for the force along the
disclination line. We consider a periodic stress wave in the form

σ12 = σ0e−iωt =
∑

n

σn sin(knz)e−iωt , (26)
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where σ0 is the shear stress component of σa resolved in the glide plane xz and σn = 4σ0/πn
is the Fourier coefficient. The exact solution to equation (25) for the nth normal mode is found
to be

εn(z, t) = Cn

knz
sin(knz)e−iωt , Cn = kn�σn

α

1

(iγω + ω2 − k2
nv

2)
. (27)

The last step is to substitute equations (3) and (27) into (13). We obtain

P =
∑

n

�2γω2σ 2
n L

2α(γ 2ω2 + (ω2 − k2v2)2)
. (28)

Then, the loss per cycle takes the form


WL =
∑

n

π�2γωσ 2
n L

α(γ 2ω2 + (ω2 − k2
nv

2)2)
, (29)

and, finally, the internal friction is found to be

Q−1 = 
W

2W
= N 
WL

2W
= 8�2q2γωµ�

πα

∑
n

1

n2(γ 2ω2 + (ω2 − k2
nv

2)2)
(30)

where � = 2N L/V is the density of disclinations and q = σ0/σa is the resolved shear stress
orientation factor (cf, e.g., [16]).

The main contribution to the internal friction comes from the first term of series in
equation (30). In this case, one has

Q−1 = 8�2q2γωµ�

πα

1

(γ 2ω2 + (ω2 − ω2
1)

2)
, (31)

where ω2
1 = k2

1v
2 = π2v2/L2.

4. Conclusions

In this paper, we have calculated the specific heat and the frequency-dependent loss due to
vibrating twist disclinations within the heterogeneous string model. We have found that the
decrement in equation (30) has a resonance-type character and is proportional to the fourth
power of the disclination length. In turn, the heat capacity varies linearly with temperature and
density of defects. An important conclusion can be drawn: that the individual (local) properties
of linear defects get lost within the string model. That is, the main physical characteristics
(heat capacity, internal friction) are found to be determined only by some general parameters
of linear defects (the length of the defect line, the density of defects) and elastic body (the
density of the solid, sound velocities, the shear modulus). It is known [17] that the experimental
study of internal friction phenomena serves as an indirect method for detecting dislocations
in crystals. As follows from our consideration, the same method can be used for detecting of
disclinations in semiconductors.
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